中文/ENG
> 技术文章 > 技术文章

石油勘探, 数字地震仪和海啸探测器的模拟电路与高温精密电阻

作者:开步电子 发表日期:2017-01-09 10:42:58 浏览量:475


地震仪系统是在勘探石油和天然气以及探测地震和海啸方面最常用的方法,它利用诸如炸药、落锤或气枪等表面冲击能量源,将冲击波前引入大地,其效果类似于制造一个小规模的受控地震。


虽然地质学家不十分确定可能发现石油的具体确切位置,但是他们的确知道在特定类型的岩层中比较容易找到石油。它经常蕴藏在非多孔岩石层之间的多孔岩石中。这些岩层通常在所谓的向斜中倾斜或交叠向上,或背斜中交叠向下。


在地球的复合结构中,比如石灰石、页岩或盐之间的界面中,每个间断都形成反射能量。这种小能量被反射回到地震检波器探测的地表。地震检波器具有非常敏感的传感器,可跨越很大的距离。 当每个分层界面的快速回响组到达地表时,被放大和记录。测量设备必须非常快地按顺序切换灵敏度,以便衰减最初浅处的高能量回响并探测最弱的大地深处的回响,不丢失传输过程中来自任何层的信号。此外,测量设备还必须没有噪声,以防丢失最弱的信号。


在修正地表层的风化和海拔高度、正常返回、第一个到达等因素后,通过对这些信号的计时和计量,就有可能生成一幅代表地球第一个约5英里深的横断面图。这些横断面显示出背斜、向斜、地层圈闭以及可能聚集了石油或天然气的其他结构。


这台现场应用过的宽带接收器和磁带驱动器上放大并记录反映地震信号的数字地震设备利用了匹配和分立的表面贴装的箔电阻器。


来自于威世箔电阻新的Z1系列Bulk Metal®高精度箔电阻器几乎能够保证无噪声地运行。无论在高温高湿的丛林还是干燥寒冷的北极,它们都能在个别地震系统内或几个相互关联的系统之间提供可预见的响应和非常精确的放大器跟踪。在以后的分析过程中对信号重建后,精密的放大器保证地质学家可以在这些精准的数据上构建他们的预测。


地震仪系统要求衰减电阻器具有快速响应的精度,以防止错过脉冲。他们必须对温度变化不敏感,必须有极好的相对跟踪温飘,这样才可以长期预见和重现增益设置和比率。电阻器还必须表现出非常低的电流噪声,以避免掩盖反射信号。鉴于工作时可能有很多信号输入通道,各放大器之间的相移一定非常紧密,故放大器模块必须互相跟踪。如果以后要对从世界各地收集到的信息进行有意义的比对,要绝对满足这些要求,特别是在跟踪方面。


地震仪系统的核心是其放大器模块。高增益放大器可选择频率,从而需要非常大的自动增益控制(AGC)的范围。


对这个单元提出的要求非常严格。由于第一个精确测量的能量突发是传送到地面,放大器必须先压低信号,然后当反映地震能量的信号减弱时再放大。


设备中使用的放大器逻辑包括增益级以及衰减器。一个电阻分压器网络允许在将信号衰减或传递到第一个放大器的各个步骤中存在信号衰减,这取决于放大器的输入范围。增益开关自动控制衰减量。


然后,信号进入可以提供完整信号或类似衰减的另一个电阻衰减器。这个衰减器连接到第二级放大器。以后的每个放大器级还包含一个可以提供精确衰减或完整信号的电阻衰减器。


虽然地震监测和海啸跟踪仪基本上与石油测井设备相同的,但是其最初动力冲击是由大自然造成的,而非人为造成的。


Z1系列箔电阻器超过以前所有精密电阻器的稳定性标准,它提高了温度稳定性、负载寿命稳定性以及防潮性的量级,所有这些在我们不可预测的全球气候方面变得更加关键。这些新基准水平的性能为设计工程师提供了搭建以前不可能实现的模拟电路的工具,同时由于不再需要在以前电路通道阶段仅用于稳定或迭代精度目的的校正电路,从而降低了大多数关键电路的成本。


在箔技术之前,高频精密应用只能采用精密金属膜电阻器,但是它们不如绕线电阻器准确和稳定,而绕线电阻器不具有良好的高频响应。新的Z1系列箔技术向设计人员呈献了比绕线电阻器更精密的电阻元件,而且还适合高频和高温应用。第四代威世箔电阻技术生产出绕线电阻器不可能实现的小型表面贴装电阻器,同时比薄膜电阻的准确性和稳定性还高。威世Bulk Metal®箔电阻器的尺寸可以小至0603,作为板载二级标准,安装在设备的任何地方,甚至进入深度空间。新的Z1-Foil FRSM系列和SMR3P表面贴装片式电阻体现了创新的新技术。


ENGLISH

CHINESE

Long term Stability

to ± 0.05% at + 240ºC, 2000 h

长期稳定性

+ 240°C之下,2000小时误差仅为±0.05


如题:对于在高温环境下的可靠运行,箔电阻器改善了散热,提高了长期稳定性,在+ 240°C之下,2000小时误差仅为±0.05%。


在过去,电阻元件工程师试图通过降低元件内的固有应力提高电阻器的性能。例如,在精密的绕线电阻器中,他们尝试了多种方法使用足够的卷绕张力将线绕好,而在骨架上成形后又减小了应力。这在制造实现时非常的困难。然而,在实际电路中的应用过程中加热和循环后,该工艺无法避免应力改变电阻值。薄膜电阻器没有这个功能,因为必须将薄膜直接喷溅或沉积到基体上形成一个新的电阻集聚。因此,使用薄膜技术的工程师必须注意使用涂层和封装保护该膜。箔电阻技术实际上通过反作用运用应力使力达到平衡,从而利用这些应力生成一个非常稳定的电阻器。


ENGLISH

CHINESE

0.1  ppm/ºC TCR Tracking,

±0.005% Resistance Match

0.1 ppm/ºC TCR 跟踪,

±0.005% 电阻匹配

R1: 1-2

R2: 3-4

R3: 5-6

R4 :7-8

R1: 1-2

R2: 3-4

R3: 5-6

R4 :7-8

B0402

300190K

B0402

300190K

B9950

300190K

B9950

300190K

B9309

300195

B9309

300195


如题:针对地震仪系统中的高精度,铝箔2 3 4电阻分压器和电阻排,提供0.1 ppm/°C TCR跟踪和±0.005%电阻匹配。


在其他技术方面,针对大数热稳定元件,制造商努力在电阻材料方面达到最低的电阻温度系数(TCR)。箔技术集中在实现无需最低TCR的箔,但是该箔在广泛的温度范围内具有最线性的TCR并确保它在极其严格的容差范围内重现。可以在一个比较厚的保持与其合金原料相同分子结构的冷轧箔中达到TCR。这是箔电阻器的基础,因为箔必须在电阻器在其整个设计寿命中可能会遇到的任何温度范围上作为一个整体结构,具有固定和已知的线性膨胀系数。


在构造中下一个最重要的元素是将箔装入独特的平面基体的粘合剂。它必须耐受高温、脉冲电源、水分侵入、冲击和振动、低温暴露、静电放电(ESD)等,而且仍然使箔元件牢固地粘在基体上。由于这些特点,箔电阻器的基本技术包含确立箔技术的基本的应力补偿。


威世精密集团(VPG)开发的Bulk Metal®箔合金具有已知线性膨胀系数(LCE)的已知正TCR。将箔结合到也具有已知LCE的扁平陶瓷基板上,选定该基板用于诱发箔中的预加应力。在这种结构中,在箔上施加了两个相对立的作用。第一个是随着温度上升箔片在阻值方面内在的增加,即一个正TCR。第二个是箔片粘接在基材上以至于被限定着随基体变化,选定的这个基板的特定的线性膨胀系数LCE比箔的LCE小。因此,当这个合成的结构经受温度上升时,由箔形成的电阻层则试图按照其固有的LCE膨胀,但却被基体较小的膨胀特性限制着。


结果是,试图抵抗基材的约束力而膨胀的箔经受了迫使其电阻下降的压缩力。在这种力的完美平衡中,由于温度升高而导致的电阻减小恰好抵消了由于同样的温度升高而导致的箔电阻的内在的阻值增加。最终产生了一个在-55°C+225°C温度范围具有接近零的TCR 0.2 ppm /°C的电阻。这种结构设计使得预加应力未超过材料的胡克常数,因此,在整个负载寿命和应用中保持平衡的电阻器稳定性,在设备的整个计划寿命期间将总电阻变化保持在0.05%以下。


箔电阻器的扁平结构与表面的电阻材料(封装前),有助于微调电阻至其电阻值的独特的过程。在气密封装诸如径向引线VHP100H系列或许多其它封装结构中可实现低至0.001%(10 ppm)的容差。电阻元件是通过网格进行光蚀刻的。这个网格包含一个具有几何比例的连续环路,当连续少量增加电阻而未引起电流噪声、热点时,可以去除该环路。网格进一步设计成在邻近的路径具有反向的电流,以尽量减少高频性能的互感和电容。使用这些基本的技术创新,可以实现许多不同配置的电阻器,其中包括功率电阻器、电流检测电阻器、气密密封测量电阻器、带应力隔离柔性终端的表面贴装片式电阻器,以及在航空航天,医疗设备,过程控制,或更多应用在需要高精密电阻器、电阻排和微调电位器的任何地方。


除了为电路设计工程师提供当今世界上最精密和最稳定的电阻元件外,采用Bulk Metal®箔电阻器Z1技术的表面贴装片式电阻器缩小了电路和降低了功耗,将全部性能优点融入一个小至0603的电阻器中。然而,减小电路面积引发了与热管理和意想不到的后果相关的新的设计挑战,并在某些情况下对ESD更加敏感。其中一个问题就是,只要在两种不同金属接合处存在温差的地方便有导致电压误差的热电动势(TEMF),比如内部电阻元件结合到电阻器的外部引脚处。不均匀的内部功率耗散、被散热器加热的引脚、以及沿导电路径中电路板的散热路径和基板材料本身都会在电阻器上逐渐形成温差。根据固有TCRLCE设计的箔也具有很小的热电势0.05μV/°C


这种与众不同的技术不是作为寻找更精确的新型电阻器的结果而到来,而是源自应变计应用的应力分析物理学。当箔技术的发明者和开发人菲力克斯·赞德曼博士通过隔离来自于在特定结构上有目的应变测量的所有外来影响来开发一种准确测量结构应变的方法时,已经在应力分析领域确立了世界范围的认同。后来,这些相同的隔离原则应用到了电阻器应用中,产生了一种比整个电阻器技术史上开发的任何电阻器都准确而稳定的新型电阻器。具有在箔和比以前更耐高温的粘合剂扩展性能的新改进的独特工艺的细节,如前面所描述。带柔性引脚和工作温度达到+240°C的表面贴装电阻器也可做到。


虽然通过平衡应力产生稳定电阻器的基本原则很好理解,只有极少数冶金企业有能力将金属合金冷轧到需要的那么薄,而且还不包含一旦蚀刻后便对电阻网格造成干扰的微孔。较厚的箔可以生产,但是他们限制了电阻范围,而且不拥有平衡箔TCR的恰当的LEC。起初,玻璃基板适合物理要求,但是很快就证明,在充满水分的环境中使用时存在着可靠性方面的风险。玻璃的自由离子与透过封装的水分渗透带来的微粒结合,形成对箔的低活性酸性蚀刻,导致偶发故障。进一步的研究表明扁平陶瓷基板会消除这一问题,但是除了无缺陷合金冷轧能力外,需要开发具有TCRLCE恰当平衡的新合金。


同时,怀疑论者预言,这样的设备没有市场,因为“没有人需要这种异常精确的东西。”然而,对知识的渴求和挑战激起了赞德曼博士的兴趣,不断发展前进,相信更好的器件会推动最好的终端设备所需的更精确电路的发展。今天,在航天、航空和医疗等最苛求的应用中使用威世箔电阻器,随着Z1 Bulk Metal®FRSM表面安装精密片式电阻最新的开发,它正在扩展改进的用于高温的,随温度变化的更高的电阻稳定性以及在潮湿环境中的近似零变化的性能水平。


关于尤瓦尔•海尔尼茨

尤瓦尔•海尔尼茨持有Technion(以色列理工学院)的电气工程理学学士学位。自2008年以来,他一直是威世精密集团精密金属箔电阻器的应用工程总监。


上一篇> 线绕电阻的材料及性能分析

下一篇>直流电流传感器的负载电阻特性